

Choosing a Web Architecture
for Perl

Perrin Harkins
We Also Walk Dogs

This used to be an easy decision

 Netscape, or Apache for you hippies
 CGI, or NSAPI if you enjoy core dumps

Server-side development matured,
and it stayed easy

 Apache became the standard web server
 mod_perl became the way to run Perl
 FastCGI was looking peaky

 Outside of Amazon's reality distortion field anyway

Then two things happened

 Ruby came along
 Renewed interest in FastCGI
 Thanks, Ruby!

 Non-blocking I/O became fashionable
 Memcached
 Lighttpd
 Nginx

Now we have many choices

 Web servers
 Apache
 Lighttpd
 Nginx
 Squid
 Perlbal
 Varnish

 Protocols
 FastCGI
 HTTP
 SCGI

FastCGI

 Many implementations for different servers
 Daemons are managed by the web server or an

external process
 Has hooks for auth, logging, and filtering, but not

always implemented and rarely used

HTTP

 Reverse proxy forwards HTTP requests to
apache/mod_perl backend

SCGI

 ”Simple CGI”
 Stealing good ideas from Python
 Simpler than FastCGI, so theoretically could be

faster

The graveyard of alternative Perl
daemons

 SpeedyCGI
 PersistentPerl
 Both replace the #! line and daemonize your

program

Biases

 Long-time mod_perl contributor
 Member of Apache Software Foundation

Apache 2.2 mod_proxy + mod_perl

 Frontend apache runs threaded worker MPM
 Backend apache runs prefork MPM
 All popular apache modules (mod_ssl,

mod_rewrite, mod_security, mod_deflate,
caching, auth) are available

 mod_proxy_balancer provides load balancing

Apache 2.2 mod_fastcgi

 Frontend runs threaded worker MPM
 As with mod_proxy, all popular apache modules are

available
 Three poorly-named configurations:

 ”Static” starts a set number of procs at server startup
 ”Dynamic” starts a new proc every time it gets a

request up to a configured limit
 ”Standalone” sends requests to daemon you start

Apache 2.2 mod_fastcgi

 Can run separate versions of same package name in
separate daemons

 True for mod_perl too if you run multiple backends,
but less obvious

 Seamless restart for code upgrades in standalone
mode

 Start a new set of procs on same socket and shut
down the old ones

 Could get close with two mod_perl backends, but not
simple

Lighttpd mod_fastcgi

 Non-blocking I/O server
 Supports static and standalone FastCGI
 Supports Authorizer role
 Solid selection of modules with equivalents of most

popular apache ones
 Same restart advantages as FastCGI on Apache
 Load balancing across FastCGI daemons

Lighttpd mod_scgi

 Same Lighttpd, different protocol
 Sketchy docs

nginx FastCGI

 Another non-blocking I/O server
 Supports standalone FastCGI only
 Does not support Authorizer role
 Good module selection
 Same restart advantages

nginx proxy + mod_perl

 Load balancing

What about running naked
mod_perl?

 Static requests
 Buffering for slow clients
 Keep-Alive

Benchmark methodology

 Very simple Catalyst app
 Sleeps for 0.1 seconds
 Returns 35K of HTML (perl.com homepage)

 Brief run of ab (Apache Bench) with intended
concurrency to warm up server

 ab tests at concurrency of 10, 50, 150, 200

General findings

 FastCGI static mode is difficult to use with
apache/mod_fastcgi

 Trial and error to find magic number
 Worked better with Lighttpd

 FastCGI standalone mode is unusable on Lighttpd
 Load balancing feature marks daemons as down if

they're too busy to answer right away and rejects
requests

 SCGI Perl implementations incomplete

Benchmark results

10 50 100 150 200

0

20

40

60

80

100

120

140

160

apache proxy + mod_perl naked mod_perl apache fastcgi static apache fastcgi dynamic
apache fastcgi standalone lighttpd fastcgi static ngingx fastcgi standalone nginx proxy + mod_perl

concurrency

re
qs

/s
ec

 Not really apples to apples

 mod_perl does other things
 Filters on non-perl content (PHP, etc.)
 Customize server and request phases
 Replace HTTP with your own protocol

 Apache 2 + mod_perl 2 is a server kit

Thanks!

And please help me add more servers...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

