

Choosing a Web Architecture
for Perl

Perrin Harkins
We Also Walk Dogs

This used to be an easy decision

 Netscape, or Apache for you hippies
 CGI, or NSAPI if you enjoy core dumps

Server-side development matured,
and it stayed easy

 Apache became the standard web server
 mod_perl became the way to run Perl
 FastCGI was looking peaky

 Outside of Amazon's reality distortion field anyway

Then two things happened

 Ruby came along
 Renewed interest in FastCGI
 Thanks, Ruby!

 Non-blocking I/O became fashionable
 Memcached
 Lighttpd
 Nginx

Now we have many choices

 Web servers
 Apache
 Lighttpd
 Nginx
 Squid
 Perlbal
 Varnish

 Protocols
 FastCGI
 HTTP
 SCGI

FastCGI

 Many implementations for different servers
 Daemons are managed by the web server or an

external process
 Has hooks for auth, logging, and filtering, but not

always implemented and rarely used

HTTP

 Reverse proxy forwards HTTP requests to
apache/mod_perl backend

SCGI

 ”Simple CGI”
 Stealing good ideas from Python
 Simpler than FastCGI, so theoretically could be

faster

The graveyard of alternative Perl
daemons

 SpeedyCGI
 PersistentPerl
 Both replace the #! line and daemonize your

program

Biases

 Long-time mod_perl contributor
 Member of Apache Software Foundation

Apache 2.2 mod_proxy + mod_perl

 Frontend apache runs threaded worker MPM
 Backend apache runs prefork MPM
 All popular apache modules (mod_ssl,

mod_rewrite, mod_security, mod_deflate,
caching, auth) are available

 mod_proxy_balancer provides load balancing

Apache 2.2 mod_fastcgi

 Frontend runs threaded worker MPM
 As with mod_proxy, all popular apache modules are

available
 Three poorly-named configurations:

 ”Static” starts a set number of procs at server startup
 ”Dynamic” starts a new proc every time it gets a

request up to a configured limit
 ”Standalone” sends requests to daemon you start

Apache 2.2 mod_fastcgi

 Can run separate versions of same package name in
separate daemons

 True for mod_perl too if you run multiple backends,
but less obvious

 Seamless restart for code upgrades in standalone
mode

 Start a new set of procs on same socket and shut
down the old ones

 Could get close with two mod_perl backends, but not
simple

Lighttpd mod_fastcgi

 Non-blocking I/O server
 Supports static and standalone FastCGI
 Supports Authorizer role
 Solid selection of modules with equivalents of most

popular apache ones
 Same restart advantages as FastCGI on Apache
 Load balancing across FastCGI daemons

Lighttpd mod_scgi

 Same Lighttpd, different protocol
 Sketchy docs

nginx FastCGI

 Another non-blocking I/O server
 Supports standalone FastCGI only
 Does not support Authorizer role
 Good module selection
 Same restart advantages

nginx proxy + mod_perl

 Load balancing

What about running naked
mod_perl?

 Static requests
 Buffering for slow clients
 Keep-Alive

Benchmark methodology

 Very simple Catalyst app
 Sleeps for 0.1 seconds
 Returns 35K of HTML (perl.com homepage)

 Brief run of ab (Apache Bench) with intended
concurrency to warm up server

 ab tests at concurrency of 10, 50, 150, 200

General findings

 FastCGI static mode is difficult to use with
apache/mod_fastcgi

 Trial and error to find magic number
 Worked better with Lighttpd

 FastCGI standalone mode is unusable on Lighttpd
 Load balancing feature marks daemons as down if

they're too busy to answer right away and rejects
requests

 SCGI Perl implementations incomplete

Benchmark results

10 50 100 150 200

0

20

40

60

80

100

120

140

160

apache proxy + mod_perl naked mod_perl apache fastcgi static apache fastcgi dynamic
apache fastcgi standalone lighttpd fastcgi static ngingx fastcgi standalone nginx proxy + mod_perl

concurrency

re
qs

/s
ec

 Not really apples to apples

 mod_perl does other things
 Filters on non-perl content (PHP, etc.)
 Customize server and request phases
 Replace HTTP with your own protocol

 Apache 2 + mod_perl 2 is a server kit

Thanks!

And please help me add more servers...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

