Choosing a Web Architecture
for Perl

Perrin Harkins
We Also Walk Dogs

This used to be an easy decision

= Netscape, or Apache for you hippies
= CGI, or NSAPI 1f you enjoy core dumps

Server-side development matured,
and it stayed easy

= Apache became the standard web server
= mod perl became the way to run Perl

= FastCGI was looking peaky

= Qutside of Amazon's reality distortion field anyway

Then two things happened

= Ruby came along

= Renewed interest in FastCGI
= Thanks, Ruby!

= Non-blocking I/O became fashionable

= Memcached
= Lighttpd
= Nginx

Now we have many choices

= Web servers = Protocols
= Apache = FastCGI
= Lighttpd = HTTP
= Nginx = SCGI
= Squid
= Perlbal

= Varnish

FastCGl

= Many implementations for different servers

= Daemons are managed by the web server or an
external process

= Has hooks for auth, logging, and filtering, but not
always implemented and rarely used

HTTP

= Reverse proxy forwards HTTP requests to
apache/mod perl backend

SCGI

= ”Simple CGI”
= Stealing good 1deas from Python

= Simpler than FastCGI, so theoretically could be
faster

The graveyard of alternative Perl
daemons
= SpeedyCGlI
= PersistentPerl

= Both replace the #! line and daemonize your
program

Apache 2.2 mod_proxy + mod_perl

= Frontend apache runs threaded worker MPM
= Backend apache runs prefork MPM

= All popular apache modules (mod ssl,
mod rewrite, mod security, mod deflate,
caching, auth) are available

= mod proxy balancer provides load balancing

Apache 2.2 mod fastcgi

» Frontend runs threaded worker MPM

= As with mod proxy, all popular apache modules are
available

= Three poorly-named configurations:

= ”Static” starts a set number of procs at server startup

= “Dynamic” starts a new proc every time it gets a
request up to a configured limit

= ”Standalone” sends requests to daemon you start

Apache 2.2 mod fastcgi

= Can run separate versions of same package name in
separate daemons

= True for mod perl too 1f you run multiple backends,
but less obvious

= Seamless restart for code upgrades in standalone
mode

= Start a new set of procs on same socket and shut
down the old ones

= Could get close with two mod perl backends, but not
simple

Lighttpd mod fastcgi

Non-blocking I/O server
Supports static and standalone FastCGI

Supports Authorizer role

Solid selection of modules with equivalents of most
popular apache ones

Same restart advantages as FastCGI on Apache

Load balancing across FastCGI daemons

Lighttpd mod scgi

= Same Lighttpd, different protocol
= Sketchy docs

nginx FastCGI

Another non-blocking 1I/O server
Supports standalone FastCGI only
Does not support Authorizer role
Good module selection

Same restart advantages

nginx proxy + mod perl

= [oad balancing

What about running naked
mod perl?

= Static requests
= Buffering for slow clients

= Keep-Alive

Benchmark methodology

= Very simple Catalyst app

= Sleeps for 0.1 seconds
= Returns 35K of HTML (perl.com homepage)

= Brief run of ab (Apache Bench) with intended
concurrency to warm up server

= ab tests at concurrency of 10, 50, 150, 200

General findings

= FastCGlI static mode 1s difficult to use with
apache/mod fastcgi

= Trial and error to find magic number
= Worked better with Lighttpd
= FastCGI standalone mode is unusable on Lighttpd

= Load balancing feature marks daemons as down 1f
they're too busy to answer right away and rejects
requests

= SCGI Perl implementations incomplete

reqgs/sec

Benchmark results

apache proxy + mod_perl naked mod_perl B apache fastcgi static apache fastcgi dynamic
apache fastcgi standalone M lighttpd fastcgi static B ngingx fastcgi standalone nginx proxy + mod_perl

160

140

120 - L i [IR
100 — —
o E— _ : :
60 f: : : :
al o | | n
20 7: : : :

0 7i - [.

50 100 150

concurrency

3 200

Not really apples to apples

mod perl does other things
Filters on non-perl content (PHP, etc.)
Customize server and request phases

Replace HTTP with your own protocol

= Apache 2 + mod_perl 2 1s a server kit

And please help me add more servers...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

